INFONKO.RU

Представление знаний и вывод на знаниях

При изучении интеллектуальных систем традиционно возникает вопрос — что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько определений, в рамках которых это становится очевидным.

Данные — это отдельные факты, характеризующие объекты, процессы и явления предметной области, а также их свойства.

При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы:

D1 — данные как результат измерений и наблюдений;

D2 — данные на материальных носителях информации (таблицы, протоколы, справочники);

D3 — модели (структуры) данных в виде диаграмм, графиков, функций;

D4 — данные в компьютере на языке описания данных;

D5 — базы данных на машинных носителях информации.

Знания основаны на данных, полученных эмпирическим путем. Они представляют собой результат мыслительной деятельности человека, направленной на обобщение его опыта, полученного в результате практической деятельности.

Знания — это закономерности предметной области (принципы, связи, законы), полученные в результате практической деятельности и профессионального опыта, позволяющие специалистам ставить и решать задачи в этой области.

При обработке на ЭВМ знания трансформируются аналогично данным.

Z1 — знания в памяти человека как результат мышления;

Z2 — материальные носители знаний (учебники, методические пособия);

Z3 — поле знаний — условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих;

Z4 — знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы — см. далее);

Z5 — база знаний на машинных носителях информации.

Часто используется такое определение знаний.

Знания — это хорошо структурированные данные, или данные о данных, или метаданные.

Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала. Интенсионал понятия — это определение его через соотнесение с понятием более высокого уровня абстракции с указанием специфических свойств. Интенсионалы формулируют знания об объектах. Другой способ определяет понятие через соотнесение с понятиями более низкого уровня абстракции или перечисление фактов, относящихся к определенному объекту. Это есть определение через данные, или экстенсионал понятия.

Пример 1.

Понятие «персональный компьютер». Его интенсионал: «Персональный компьютер — это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за $1000».

Экстенсионал этого понятия: «Персональный компьютер — это IBM PC, Macintosh, Compaq…»

Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний — базы данных (небольшого объема, но исключительно дорогие информационные массивы). Базы знаний — основа любой интеллектуальной системы.



Знания могут быть классифицированы по следующим категориям:

Поверхностные — знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области.

Глубинные — абстракции, аналогии, схемы, отображающие структуру и природу процессов, протекающих в предметной области. Эти знания объясняют явления и могут использоваться для прогнозирования поведения объектов.

Пример 2

Поверхностные знания: «Если нажать на кнопку, раздастся звук. Если болит голова, то следует принять аспирин».

Глубинные знания: «Принципиальная электрическая схема звонка и проводки. Знания физиологов и врачей высокой квалификации о причинах, видах головных болей и методах их лечения».

Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет универсальных методик, позволяющих выявлять глубинные структуры знаний и работать с ними.

Кроме того, в учебниках по ИИ знания традиционно делят на процедурные и декларативные. Исторически первичными были процедурные знания, то есть знания, «растворенные» в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), то есть увеличивалась роль декларативных знаний.

Сегодня знания приобрели чисто декларативную форму, то есть знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

Модели представления знаний

Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:

- продукционные модели;

- семантические сети;

- фреймы;

- формальные логические модели.

Продукционная модель

Продукционная модель или модель, основанная на правилах, позволяет представить знания в виде предложений типа «Если (условие), то (действие)».

Под «условием» (антецедентом) понимаются некоторое предложение-образец, по которому осуществляется поиск в базе данных, а под «действием» (консеквентном) — действия, выполняемые при успешном исходе поиска (они могут быть промежуточными, выступающими далее как условия и терминальными или целевыми, завершающими работу системы).

Чаще всего вывод на такой базе знаний бывает прямой (от данных к поиску цели) или обратный (от цели для ее подтверждения — к данным). Данные — это исходные факты, хранящиеся в базе фактов, на основании которых запускается машина вывода или интерпретатор правил, перебивающий правила из продукционной базы знаний (см. далее).

Продукционная модель чаще всего применяется в промышленных экспертных системах. Она привлекает разработчиков своей наглядностью высокой модульностью, легкостью внесения дополнений и изменений и простотой механизма логического вывода.

Имеется большое число программных средств, реализующих продукционный подход (язык OPS 5; «оболочки» или «пустые» ЭС — EXSYS Professional, Kappa, ЭКСПЕРТ; ЭКО, инструментальные системы ПИЭР и СПЭИС и др.), а также промышленных ЭС на его основе (например, ЭС, созданных средствами G2 и др.

Семантические сети

Термин семантическая означает «смысловая», а сама семантика — это наука, устанавливающая отношения между символами и объектами, которые они обозначают, то есть наука, определяющая смысл знаков.

Семантическая сеть — это ориентированный граф, вершины которого — понятия, в дуги — отношения между ними.

В качестве понятий обычно выступают абстрактные или конкретные объекты, а отношения — это связи типа «это» («АКО — A-Kind-Of», «is»), «имеет частью» («has part»), «принадлежит», «любит». Характерной особенностью семантических сетей является обязательное наличие трех типов отношений:

- класс — элемент класса (цветок — роза);

- свойство — значение (цвет — желтый);

- пример элемента класса (роза — чайная).

Можно предложить несколько классификаций семантических сетей, связанных с типами отношений между понятиями.

- По количеству типов отношений:

- однородные (с единственным типом отношений);

- неоднородные (с различными типами отношений).

- По типам отношений:

- Бинарные (в которых отношения связывают два объекта).

- Неоднородные (с различными типами отношений).

По типам отношений:

- бинарные (в которых отношения связывают два объекта);

- N-арные (в которых есть специальные отношения, связывающие более двух понятий).

Наиболее часто в семантических сетях используются следующие отношения:

- связи типа «часть–целое» («класс–подкласс», «элемент–множество», и т. п.);

- функциональные связи (определяемые обычно глаголами «производит», «влияет»…);

- количественные (больше, меньше, равно…);

- пространственные (далеко от, близко от, за, под, над…);

- временные (раньше, позже, в течение…);

- атрибутивные связи (иметь свойство, иметь значение);

- логические связи (И, ИЛИ, НЕ);

- лингвистические связи и др.

Проблема поиска решения в базе знаний семантической сети сводится к задаче поиска фрагмента сети, соответствующего некоторой подсети, отражающей поставленный запрос к базе.

Пример 3.

На Рис. 16 изображена семантическая сеть. В качестве вершин тут выступают понятия «человек», «т. Иванов», «Волга», «автомобиль», «вид транспорта» и «двигатель».

Рис. 16. Семантическая сеть.

Данная модель представления знаний была предложена американским психологом Куиллианом. Основным ее преимуществом является то, что она более других соответствует современным представлениям об организации долговременной памяти человека.

Недостатком этой модели является сложность организации процедуры поиска вывода на семантической сети.

Фреймы

Термин фрейм (от английского frame, что означает «каркас» или «рамка») был предложен Марвином Минским, одним из пионеров ИИ в 70-е годы для обозначения структуры знаний для восприятия пространственных сцен. Эта модель, как и семантическая сеть, имеет глубокое психологическое обоснование.

Фрейм — это абстрактный образ для представления некоего стереотипа восприятия.

В психологии и философии известно понятие абстрактного образа. Например, произнесение вслух слова «комната» порождает у слушающих образ комнаты: «жилое помещение с четырьмя стенами, полом, потолком, окнами и дверью, площадью 6-20 м2». Из этого описания ничего нельзя убрать (например, убрав окна, мы получим уже чулан, а не комнату), но в нем есть «дырки» или «слоты» — это незаполненные значения некоторых атрибутов — например, количество окон, цвет стен, высота потолка, покрытие пола и др.

В теории фреймов такой образ комнаты называется фреймом комнаты. Фреймом также называется и формализованная модель для отображения образа.

Различают фреймы-образцы, или прототипы, хранящиеся в базе знаний, и фреймы-экземпляры, которые создаются для отображения реальных фактических ситуаций на основе поступающих знаний. Модель фрейма является достаточно универсальной, поскольку позволяет отобразить все многообразие знаний о мире через:

- фреймы-структуры, использующиеся для обозначения объектов и понятий (заем, залог, вексель);

- фреймы-роли (менеджер, кассир, клиент);

- фреймы-сценарии (банкротство, собрание акционеров, празднование именин);

- фреймы-ситуации (тревога, авария, рабочий режим устройства)и др.

Традиционно структура фрейма может быть представлена как список свойств:

(ИМЯ ФРЕЙМА:

(имя 1-го слота: значение 1-го слота),

(имя 2-го слота: значение 2-го слота),

(имя N-го слота: значение N-го слота)).

Ту же запись можно представить в виде таблицы, дополнив ее двумя столбцами.

Табл. 1. Структура фрейма

Имя фрейма
Имя слота Значение слота Способ получения значения Присоединенная процедура

В таблице дополнительные столбцы предназначены для описания способа получения слотом его значений и возможного присоединения к тому или иному слоту специальных процедур, что допускается в теории фреймов. В качестве значения слота может выступать имя другого фрейма, так образуются сети фреймов.

Существует несколько способов получения слотом значений во фрейме-экземпляре:

- по умолчанию от фрейма-образца (Default-значение);

- через наследование свойств от фрейма, указанного в слоте АКО;

- по формуле, указанной в слоте;

- через присоединенную процедуру;

- явно из диалога с пользователем;

- из базы данных.

Важнейшим свойством теории фреймов является заимствование из теории семантических сетей — так называемое наследование свойств. И во фреймах, и в семантических сетях наследование происходит по АКО-связям (A-Kind-Of=это). Слот АКО указывает на фрейм более высокого уровня иерархии, откуда неявно наследуются, то есть переносятся, значения аналогичных слотов.

Пример 4.

Например, в сети фреймов на Рис. 17 понятие «ученик» наследует свойства фреймов «ребенок» и «человек», которые находятся на более высоком уровне иерархии. Так, на вопрос «любят ли ученики сладкое» следует ответ «да», так как этим свойством обладают все дети, что указано во фрейме «ребенок». Наследование свойств может быть частичным, так как возраст для учеников не наследуется из фрейма «ребенок», поскольку указан явно в своем собственном фрейме.

Человек
Ребенок
АКО Млекопитающее Ученик
АКО Человек
Умеет Мыслить АКО Ребенок
Возраст 0-16 лет
Учится В школе
Рост 50-180 см
Возраст 7-17 лет
Любит Сладкое
Носит Форму

Рис. 17. Сеть фреймов.

Основным преимуществом фреймов как модели представления знаний является то, что она отражает концептуальную основу организации памяти человека, а также ее гибкость и наглядность.

Вывод на знаниях

Несмотря на все недостатки, наибольшее распространение получила продукционная модель представления знаний. При использовании продукционной модели база знаний состоит из набора правил. Программа, управляющая перебором правил, называется машиной вывода.

Машина вывода (интерпретатор правил) выполняет две функции: во-первых, просмотр существующих фактов из рабочей памяти (базы данных) и правил из базы знаний и добавление (по мере возможности) в рабочую память новых фактов и, во-вторых, определение порядка просмотра и применения правил. Этот механизм управляет процессом консультации, сохраняя для пользователя информацию о полученных заключениях, и запрашивает у него информацию, когда для срабатывания очередного правила в рабочей памяти оказывается недостаточно данных.

В подавляющем большинстве систем, основанных на знаниях, механизм вывода представляет собой небольшую по объему программу и включает два компонента — один реализует собственно вывод, другой управляет этим процессом.

Действие компонента вывода основано на применении правила, называемого modus ponens.

Правило modus ponens. Если известно, что истинно утверждение А и существует правило вида «ЕСЛИ А, ТО В», тогда утверждение В также истинно.

Правила срабатывают, когда находятся факты, удовлетворяющие их левой части: если истинна посылка, то должно быть истинно и заключение.

Компонент вывода должен функционировать даже при недостатке информации. Полученное решение может и не быть точным, однако система не должна останавливаться из-за того, что отсутствует какая-либо часть входной информации.

Управляющий компонент определяет порядок применения правил и выполняет четыре функции:

Сопоставление — образец правила сопоставляется с имеющимися фактами.

Выбор — если в конкретной ситуации может быть применено сразу несколько правил, то из них выбирается одно, наиболее подходящее по заданному критерию (разрешение конфликта).

Срабатывание — если образец правила при сопоставлении совпал с какими-либо фактами из рабочей памяти, то правило срабатывает.

Действие — рабочая память подвергается изменению путем добавления в нее заключения сработавшего правила. если в правой части правила содержится указание на какое-либо действие, то оно выполняется (как, например, в системах обеспечения безопасности информации).

Рис. 18. Цикл работы интерпретатора.

Интерпретатор (механизм вывода)
Память состояний
Данные Образцы
………… ………......
………......
Рабочая память (база данных) Модули (база знаний)

Рис. 19. Схема функционирования интерпретатора.

Интерпретатор продукций работает циклически. В каждом цикле он просматривает все правила, чтобы выявить те, посылки которых совпадают с известными на данный момент фактами из рабочей памяти. После выбора правило срабатывает, его заключение заносится в рабочую память, и затем цикл повторяется сначала.

В одном цикле может сработать только одно правило. Если несколько правил успешно сопоставлены с фактами, то интерпретатор производит выбор по определенному критерию единственного правила, которое срабатывает в данном цикле. Цикл работы интерпретатора схематически представлен на Рис. 18.

Информация из рабочей памяти последовательно сопоставляется с посылками правил для выявления успешного сопоставления. Совокупность отобранных правил составляется так называемое конфликтное множество. Для разрешения конфликта интерпретатор имеет критерий, с помощью которого он выбирает единственное правило, после чего оно срабатывает. Это выражается в занесении критерия выбора конфликтующих правил. Если же в заключение правила входит название какого-нибудь действия, то оно выполняется.

Работа машины вывод зависит только от состояния рабочей памяти и от состава базы знаний. На практике обычно учитывается история работы, то есть поведение механизма вывода в предшествующих циклах. Информация о поведении механизма вывода запоминается в памяти состояний (Рис. 19). Обычно память состояний содержит протокол системы.



infonko.ru/dannie-obektivnogo-issledovaniya.html infonko.ru/dannie-obeshaniya-avgust-2010-goda.html infonko.ru/dannie-o-nalichii-specialno-oborudovannih-pomeshenij-dlya-organizacii-obrazovatelnogo-processa.html infonko.ru/dannie-o-slozhenii-literatur-sredizemnomorya.html infonko.ru/dannie-o-slozhenii-literatur-vostoka.html infonko.ru/dannie-osmotra-i-palpacii-oblasti-serdca-i-prilezhashih-oblastej-v-norme-i-patologii-verhushechnij-tolchok-v-norme-i-patologii-serdechnij-tolchok.html infonko.ru/dannie-o-vnutrennej-soglasovannosti.html infonko.ru/dannie-s-fiksirovannoj-tochkoj.html infonko.ru/dannij-dogovor-yavlyaetsya-konsensualnim-vzaimnim-vozmezdnim.html infonko.ru/dannij-dogovor-yavlyaetsya-obichno-publichnim-dogovorom-v-polzu-tretego-lica-tak-kak-kommercheskaya-organizaciya-osushestvlyaet-perevozki-transportom-obshego-polzovaniya.html infonko.ru/dannij-punkt-dolzhen-vklyuchat.html infonko.ru/dannoe-polozhenie-yavlyaetsya-oficialnim-vizovom-na-sorevnovaniya.html infonko.ru/dannoe-uprazhnenie-pozvolilo-vam-dostich-ochen-i-ochen-mnogogo.html infonko.ru/dannoe-uravnenie-yavlyaetsya-obshej-formoj-zapisi-zakona-raspredeleniya-skorostej-molekul-spravedlivoj-dlya-lyubih-intervalov-skorostej.html infonko.ru/dannomu-kodu-sootvetstvuet-televizor-samsung-ue40f6400.html infonko.ru/dannuyu-knigu-s-nemenshim-osnovaniem-mozhno-schitat-rasshifrovkoj-biblii.html infonko.ru/da-no-est-i-kulturi-bolee-primitivnie-chem-vashi.html infonko.ru/danskih-prav-i-obyazannostej.html infonko.ru/dantes-vihodit-iz-komnati-vivalivaet-v-okno-kartofelnuyu-kozhuru-kinorezhisser-s-dosadoj-smotrit.html infonko.ru/dao-de-dzin-kniga-puti-i-blagodati-rasshifrovka-kartinki.html