INFONKO.RU

Магнитные Поля и Тело человека

Влиянию электромагнитных полей на тело человека и животных посвящено великое множество статей, однако, в большинстве из них описаны эффекты, оказываемые полями радио- и микроволновой частоты или, в последние годы, промышленной частоты (50-60 Гц). Исследования биологических эффектов постоянных магнитных полей сконцентрированы на больших полях уровня полей в приборах MRI (магнитно-резонансные томографы), обычно составляющих несколько Тесла (несколько десятков тысяч Гаусс). К сожалению, исследования воздействия полей, типичных для продуктов магнитной терапии, большинство из которых ограничено несколькими сотнями Гаусс даже на поверхности магнита, весьма малочисленны. Тем не менее, основные механизмы воздействия магнитных полей на биологические организмы, позволяющие развивать магнитную терапию, известны. Эти механизмы включают в себя: 1) увеличение кровотока в результате возросшего содержания кислорода (оба эти явления лежат в основе способности организма к самовосстановлению); 2) изменение скорости миграции ионов кальция, в результате чего, с одной стороны, кальций быстрее поступает в сломанную кость, и она быстрее срастается, а с другой стороны, кальций быстрее вымывается из больного пораженного артритом сустава; 3) изменение кислотно-щелочного баланса (pH) различных жидкостей в теле человека и животных (дисбаланс часто является следствием болезни); 4) изменение выработки гормонов эндокринными железами; 5) изменение ферментной активности и скоростей различных биохимических процессов, 6) изменение вязкости крови.

Человеческое тело с магнитной точки зрения представляет собой инертный материал, каковым является его основное содержание – вода.

Под воздействием магнитного поля химическая структура воды не меняется, но изменяется морфология и сила сцепления ряда примесей. Как известно, при магнитной обработке воды кальциевые примеси (CaCO3) теряют способность выпадать в осадок в виде плотного камня и кристаллизуются в виде мелкодисперсной взвеси. При контакте воды, подвергшейся магнитной обработке, с уже выделившимися солями происходит их частичное растворение, а также разрушение до состояния мелкого легкоудаляемого шлама, который улавливается стандартными фильтрами очистки от механических примесей.

Магнитная обработка воды, таким образом, имеет безусловно техническое (защита котлов, трубопроводов, бойлеров и т.п.) значение, а не лечебное.

Это лишь подтверждает, что магнитное поле может влиять на процессы нуклиации в организме человека. В целом вода диамагнитна, т.е. слабо отталкивается магнитными полями. Под действием магнитного поля электроны молекул воды могут слегка корректировать свое движение, создавая при этом магнитное поле противоположного направления, примерно в 100,000 раз меньше приложенного. При удалении магнитного поля электроны возвращаются на свои первоначальные орбиты, и молекулы воды снова становятся немагнитными.



Известно, что многие покровители магнитной терапии предлагают к использованию в лечебных целях "намагниченную воду”, - вряд ли это возможно. Хотя вода и реагирует на приложенное поле, но эта реакция весьма слаба, к тому же она тут же практически пропадает, как только поле удаляется. Однако полностью отрицать возможность воздействия сильного магнитного поля на структуру молекул было бы также неправильным.

Диамагнетизм воды и большинства физиологических жидкостей очень слаб. Тем не менее, недавно была продемонстрирована магнитная левитация (парение) не только капель воды, но также цветков, кузнечиков и маленьких лягушек (Berry и Geim 1997) в очень сильном поле, производимом электромагнитом в 160,000 Гаусс (16 Тесла). Эти "летающие лягушки" были показаны в средствах массовой информации по всему миру, но они лишь подтверждают правило: большинство слабых магнитных полей, которые используются в устройствах магнитной терапии, могут вызывать лишь диамагнитные силы в тысячи раз слабее гравитационных.

Некоторые авторы утверждают также, что магнитные поля притягивают кровь, ссылаясь на железо, которое она содержит. Однако, железо крови очень сильно отличается от металлического железа, которое является сильным магнетиком благодаря кооперативным эффектам, объединяющим индивидуальные атомные магнитные моменты – явлению ферромагнетизма. Свойства ферромагнитного материала являются результатом совместного поведения многих магнитных атомов, действующих в унисон. Атомы железа в крови содержатся не изолированно, а входят в состав больших молекул гемоглобина, расположенных внутри красных кровяных телец. Хотя каждый из атомов железа магнитный, он находится на значительном удалении от остальных атомов, остается слабообменно связанным с другими атомами Fe, и, следовательно, в значительной мере магнитно-независимым.

Исследования влияния сильного статического магнитного поля на кровь человека проводились многократно с помощью таких методов, как ядерный магнитный резонанс (NMR), магнитная томография (MRI). Еще в 1936 году ученые Поулинг и Кориел сообщили о диамагнитной восприимчивости оксигемоглобина (т.е. обогащенной кислородом крови) и парамагнитной восприимчивости деоксигемоглобина (т.е. крови бедной кислородом). В ходе этих исследований удалось оценить, в частности, величину эффективных магнитных моментов комплекса Fe+2, который входит в состав гемоглобина крови человека. 10 лет назад (1993) Хигаши и соавторами исследовали ориентацию нормальных эритроцитов крови в сильном постоянном магнитном поле с максимальной величиной до 8 Тесла. Было обнаружено, что эритроциты ориентируются таким образом, чтобы плоскость их диска была параллельна направлению приложенного поля. Наконец, в 1997 году американские исследователи Хайк и Чен из Университета Флориды изучили различные аспекты воздействия сильных постоянных магнитных полей на кровь человека, а именно: на магнитную восприимчивость, магнитодвижущую силу и вязкость.

Магнитная восприимчивость крови измерялась с использованием СКВИД-магнетометра. Было обнаружено, что кровь ведет себя как диамагнитная жидкость, когда она обогащена кислородом (в артериях) и как парамагнитный материал, когда она обескислорожена (в венах). На рис. 15.14 и 15.15 представлены результаты измерения магнитной восприимчивости крови в артериях (1) и венах.


Рис. 15.14 Магнитная восприимчивость крови, обогащенной кислородом.


Рис.15.15 Магнитная восприимчивость крови, бедной кислородом.

В ходе экспериментов величина прилагаемого магнитного поля варьировалась от +5 Тесла до -5 Тесла, с шагом 0.5 Тесла. Исследуемые зависимости, как следует из рисунков, имеют линейный характер. Для крови бедной кислородом (венозной) восприимчивость представляет собой прямую с положительным наклоном (3.5)*10-6 , для крови, богатой кислородом (артериальной) – восприимчивость имеет отрицательный наклон, равный

(-6.6)*10-7. Следует отметить, что при слабых магнитных полях, обычно применяемых в целях магнитной терапии, намагниченность крови ничтожно мала. Кровь, как и вода, слабо отталкивается магнитными полями, а не притягивается.

Исследовалось также влияние магнитного поля на вязкость крови. Было обнаружено, что течение крови замедляется в присутствии поля. Результаты эксперимента представлены на Рис. 15.16.


Рис. 15.16. Вязкость крови.

В серии экспериментов обнаружено, что замедление движения крови достигает 25%, если величина приложенного поля составляет 10 тесла. При значении поля в 1 Тесла (характерная величина для MRI – устройств), вязкость меняется менее чем на 0.3 %, что не позволяет рассчитывать на сколько-нибудь значительный эффект.

Хотя большинство компонент человеческого тела и других живых организмов являются слабо диамагнитными, обнаружено, что многие организмы содержат в небольших количествах сильно магнитные материалы, обычно магнетиты (Fe3O4). Наиболее интересный случай – это магнитотактическая бактерия, содержащая такое количество магнитных частиц, что они вызывают ориентацию бактерии по линиям магнитного поля Земли. Кристаллы магнетитов присутствуют также в теле голубя, пчел, многих млекопитающих, и даже в мозгу человека. Тем не менее кажется совершенно невероятным, чтобы присутствием столь малых количеств магнетитов в теле человека можно было объяснить эффект магнитной терапии. Однако, если частицы магнетита расположены в определенном месте, они могут локально усиливать эффекты слабых магнитных полей, например, изменять поток ионов через мембраны клеток, или тип электрического пропускания нервных клеток.



infonko.ru/kelejnie-zapisi-ieromonaha-ioilya.html infonko.ru/kelih-vina-z-sirom-cheese-and-wine-party.html infonko.ru/kem-bili-zalozheni-osnovi-postroeniya-sovremennih-evm.html infonko.ru/kem-bil-vveden-v-nauchnij-obihod-termin-morfema.html infonko.ru/kembridzhskaya-shkola-marzhinalizma.html infonko.ru/kem-dolzhni-bit-pedagogi-s-tochki-zreniya-informatizacii-obrazovaniya.html infonko.ru/kemerovskaya-nahodka-ili-otkroveniya-polkovnika-kgb.html infonko.ru/kem-gospod-yavlyaetsya-dlya-menya.html infonko.ru/kem-i-chem-po-tvoemu-razumeniyu-ti-yavlyaeshsya-i-kem-i-chem-ti-vibiraesh-bit.html infonko.ru/kem-osushestvlyayutsya-issledovaniya-ispitaniya-i-izmereniya-fakticheskih-znachenij-vrednih-i-ili-opasnih-faktorov-v-celyah-specialnoj-ocenki-uslovij-truda.html infonko.ru/kem-ti-hochesh-stat-kogda-virastesh.html infonko.ru/kem-zapolnyayutsya-blanki-putevih-zapisok-pri-telefonnih-sredstvah-svyazi.html infonko.ru/ken-blanchard-lovite-lyudej-na-tom-chto-oni-delayut-pravilno.html infonko.ru/kenijskij-ekolog-vangari-maatai-sleva-i-premer-ministr-norvegii-jens-stoltenberg-sprava.html infonko.ru/ken-kejes-rukovodstvo-po-dostizheniyu-visshego-soznaniya.html infonko.ru/kenneth-tuttle-doktor-filosofii-elk-ridge-yuta.html infonko.ru/kentavri-i-drugie-sukini-deti.html infonko.ru/kenzhebaeva-gzh-tulemisov-ash.html infonko.ru/keramicheskie-materiali-i-steklo.html infonko.ru/keramicheskij-sosud-xvii-v-do-n-e-kyul-tepe-malaya-aziya.html