INFONKO.RU

Как производятся арифметические операции в позиционных системах счисления?

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Сложение

Таблицы сложения легко составить, используя Правило Счета.

Сложение в двоичной системе Сложение в восьмеричной системе

Сложение в шестнадцатиричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Шестнадцатеричная: F16+616 Ответ: 15+6 = 2110 = 101012 = 258 = 1516. Проверка. Преобразуем полученные суммы к десятичному виду: 101012 = 24 + 22 + 20 = 16+4+1=21, 258 = 2*81 + 5*80 = 16 + 5 = 21, 1516 = 1*161 + 5*160 = 16+5 = 21.

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F16+716+316 Ответ: 5+7+3 = 2510 = 110012 = 318 = 1916. Проверка: 110012 = 24 + 23 + 20 = 16+8+1=25, 318 = 3*81 + 1*80 = 24 + 1 = 25, 1916 = 1*161 + 9*160 = 16+9 = 25.

Пример 3. Сложим числа 141,5 и 59,75.

Ответ: 141,5 + 59,75 = 201,2510 = 11001001,012 = 311,28 = C9,416

Проверка. Преобразуем полученные суммы к десятичному виду:
11001001,012 = 27 + 26 + 23 + 20 + 2-2 = 201,25
311,28 = 3*82 + 1•81 + 1*80 + 2*8-1 = 201,25
C9,416 = 12*161 + 9*160 + 4*16-1 = 201,25

Вычитание

Пример 4. Вычтем единицу из чисел 102, 108 и 1016

Пример 5. Вычтем единицу из чисел 1002, 1008 и 10016.

Пример 6. Вычтем число 59,75 из числа 201,25.

Ответ: 201,2510 – 59,7510 = 141,510 = 10001101,12 = 215,48 = 8D,816.

Проверка. Преобразуем полученные разности к десятичному виду:
10001101,12 = 27 + 23 + 22 + 20 + 2–1 = 141,5;
215,48 = 2*82 + 1*81 + 5*80 + 4*8–1 = 141,5;
8D,816 = 8*161 + D*160 + 8*16–1 = 141,5.

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Умножение в двоичной системе Умножение в восьмеричной системе

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Пример 7. Перемножим числа 5 и 6.

Ответ: 5*6 = 3010 = 111102 = 368.

Проверка. Преобразуем полученные произведения к десятичному виду:
111102 = 24 + 23 + 22 + 21 = 30;
368 = 3•81 + 6•80 = 30.

Пример 8. Перемножим числа 115 и 51.

Ответ: 115*51 = 586510 = 10110111010012 = 133518.

Проверка. Преобразуем полученные произведения к десятичному виду:
10110111010012 = 212 + 210 + 29 + 27 + 26 + 25 + 23 + 20 = 5865;
133518 = 1*84 + 3*83 + 3*82 + 5*81 + 1*80 = 5865.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.



Пример 9. Разделим число 30 на число 6.

Ответ: 30 : 6 = 510 = 1012 = 58.

Пример 10. Разделим число 5865 на число 115.

Восьмеричная: 133518 :1638

Ответ: 5865 : 115 = 5110 = 1100112 = 638.

Проверка. Преобразуем полученные частные к десятичному виду:
1100112 = 25 + 24 + 21 + 20 = 51; 638 = 6*81 + 3*80 = 51.

Пример 11. Разделим число 35 на число 14.

Восьмеричная: 438 : 168

Ответ: 35 : 14 = 2,510 = 10,12 = 2,48.

Проверка. Преобразуем полученные частные к десятичному виду:
10,12 = 21 + 2 -1 = 2,5;
2,48 = 2*80 + 4*8-1 = 2,5.

Как представляются в компьютере целые числа?

Целые числа могут представляться в компьютере со знаком или без знака.

Целые числа без знака обычно занимают в памяти один или два байта и принимают в однобайтовом формате значения от 000000002 до 111111112 , а в двубайтовом формате — от 00000000 000000002 до 11111111 111111112.

Диапазоны значений целых чисел без знака

Формат числа в байтах Диапазон
Запись с порядком Обычная запись
0 ... 28–1 0 ... 255
0 ... 216–1 0 ... 65535

Примеры:

а) число 7210 = 10010002 в однобайтовом формате:

б) это же число в двубайтовом формате:

в) число 65535 в двубайтовом формате:

Целые числа со знаком обычно занимают в памяти компьютера один, два или четыре байта, при этом самый левый (старший) разряд содержит информацию о знаке числа. Знак “плюс” кодируется нулем, а “минус” — единицей.

Диапазоны значений целых чисел со знаком

Формат числа в байтах Диапазон
Запись с порядком Обычная запись
–27 ... 27–1 –128 ... 127
–215 ... 215–1 –32768 ... 32767
–231 ... 231–1 –2147483648 ... 2147483647

Рассмотрим особенности записи целых чисел со знаком на примере однобайтового формата, при котором для знака отводится один разряд, а для цифр абсолютной величины – семь разрядов.

В компьютерной технике применяются три формы записи (кодирования) целых чисел со знаком: прямой код, обратный код, дополнительный код.

Последние две формы применяются особенно широко, так как позволяют упростить конструкцию арифметико-логического устройства компьютера путем замены разнообразных арифметических операций операцией cложения.

Положительные числа в прямом, обратном и дополнительном кодах изображаются одинаково — двоичными кодами с цифрой 0 в знаковом разряде. Например:

Отрицательные числа в прямом, обратном и дополнительном кодах имеют разное изображение.

1. Прямой код. В знаковый разряд помещается цифра 1, а в разряды цифровой части числа — двоичный код его абсолютной величины. Например:

2. Обратный код. Получается инвертированием всех цифр двоичного кода абсолютной величины числа, включая разряд знака: нули заменяются единицами, а единицы — нулями. Например:

3. Дополнительный код. Получается образованием обратного кода с последующим прибавлением единицы к его младшему разряду. Например:

Обычно отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа.

Как компьютер выполняет арифметические действия над целыми числами?

Сложение и вычитание

В большинстве компьютеров операция вычитания не используется. Вместо нее производится сложение уменьшаемого с обратным или дополнительным кодом вычитаемого. Это позволяет существенно упростить конструкцию АЛУ.

При сложении обратных кодов чисел А и В имеют место четыре основных и два особых случая:

1. А и В положительные. При суммировании складываются все разряды, включая разряд знака. Так как знаковые разряды положительных слагаемых равны нулю, разряд знака суммы тоже равен нулю. Например:

Получен правильный результат.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в обратном коде. При переводе в прямой код биты цифровой части результата инвертируются: 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Компьютер исправляет полученный первоначально неправильный результат (6 вместо 7) переносом единицы из знакового разряда в младший разряд суммы.

4. А и В отрицательные. Например:

Полученный первоначально неправильный результат (обратный код числа –1110 вместо обратного кода числа –1010) компьютер исправляет переносом единицы из знакового разряда в младший разряд суммы.

При переводе результата в прямой код биты цифровой части числа инвертируются: 1 0001010 = –1010.

При сложении может возникнуть ситуация, когда старшие разряды результата операции не помещаются в отведенной для него области памяти. Такая ситуация называется переполнением разрядной сетки формата числа. Для обнаружения переполнения и оповещения о возникшей ошибке в компьютере используются специальные средства. Ниже приведены два возможных случая переполнения.

5. А и В положительные, сумма А+В больше, либо равна 2n–1, где n – количество разрядов формата чисел (для однобайтового формата n=8, 2n–1 = 27 = 128). Например:

Семи разрядов цифровой части числового формата недостаточно для размещения восьмиразрядной суммы (16210 = 101000102), поэтому старший разряд суммы оказывается в знаковом разряде. Это вызывает несовпадение знака суммы и знаков слагаемых, что является свидетельством переполнения разрядной сетки.

6. А и В отрицательные, сумма абсолютных величин А и В больше, либо равна 2n–1. Например:

Здесь знак суммы тоже не совпадает со знаками слагаемых, что свидетельствует о переполнении разрядной сетки.

Все эти случаи имеют место и при сложении дополнительных кодов чисел:

1. А и В положительные. Здесь нет отличий от случая 1, рассмотренного для обратного кода.

2. А положительное, B отрицательное и по абсолютной величине больше, чем А. Например:

Получен правильный результат в дополнительном коде. При переводе в прямой код биты цифровой части результата инвертируются и к младшему разряду прибавляется единица: 1 0000110 + 1 = 1 0000111 = –710.

3. А положительное, B отрицательное и по абсолютной величине меньше, чем А. Например:

Получен правильный результат. Единицу переноса из знакового разряда компьютер отбрасывает.

4. А и В отрицательные. Например:

Получен правильный результат в дополнительном коде. Единицу переноса из знакового разряда компьютер отбрасывает.

Случаи переполнения для дополнительных кодов рассматриваются по аналогии со случаями 5 и 6 для обратных кодов.

Сравнение рассмотренных форм кодирования целых чисел со знаком показывает:

· на преобразование отрицательного числа в обратный код компьютер затрачивает меньше времени, чем на преобразование в дополнительный код, так как последнее состоит из двух шагов — образования обратного кода и прибавления единицы к его младшему разряду;

· время выполнения сложения для дополнительных кодов чисел меньше, чем для их обратных кодов, потому что в таком сложении нет переноса единицы из знакового разряда в младший разряд результата.

Умножение и деление

Во многих компьютерах умножение производится как последовательность сложений и сдвигов. Для этого в АЛУ имеется регистр, называемый накапливающим сумматором, который до начала выполнения операции содержит число ноль. В процессе выполнения операции в нем поочередно размещаются множимое и результаты промежуточных сложений, а по завершении операции — окончательный результат.

Другой регистр АЛУ, участвующий в выполнении этой операции, вначале содержит множитель. Затем по мере выполнения сложений содержащееся в нем число уменьшается, пока не достигнет нулевого значения.

Для иллюстрации умножим 1100112 на 1011012.

Деление для компьютера является трудной операцией. Обычно оно реализуется путем многократного прибавления к делимому дополнительного кода делителя.



infonko.ru/osnovnie-principi-vospitaniya-detej-doshkolnogo-vozrasta.html infonko.ru/osnovnie-principi-zakalivaniya.html infonko.ru/osnovnie-principi-zakonnosti.html infonko.ru/osnovnie-priznaki-gosudarstva.html infonko.ru/osnovnie-priznaki-gruppovoj-obshnosti-specifika-gruppovih-celej-i-duhovno-kulturnoj-zhizni.html infonko.ru/osnovnie-priznaki-i-cherti-pravovogo-gosudarstva.html infonko.ru/osnovnie-priznaki-institutov.html infonko.ru/osnovnie-priznaki-klassifikacii-reklamnih-sredstv.html infonko.ru/osnovnie-priznaki-konyunktivitov.html infonko.ru/osnovnie-priznaki-oligopolii-strategicheskoe-vzaimodejstvie-firm-v-usloviyah-oligopolii.html infonko.ru/osnovnie-priznaki-organa-ispolnitelnoj-vlasti.html infonko.ru/osnovnie-priznaki-pravovogo-otnosheniya.html infonko.ru/osnovnie-priznaki-predpriyatiya-kak-yuridicheskogo-lica.html infonko.ru/osnovnie-priznaki-professionalizacii-upravleniya-personalom.html infonko.ru/osnovnie-priznaki-promishlennogo-predpriyatiya.html infonko.ru/osnovnie-priznaki-sinonimichnosti-slov.html infonko.ru/osnovnie-priznaki-tovarnogo-proizvodstva-i-ego-rol-v-ekonomicheskom-progresse.html infonko.ru/osnovnie-priznaki-ukazivayushie-na-sovershenie-gruppi-ubijstv-odnimi-i-temi-zhe-licami.html infonko.ru/osnovnie-priznaki-zhivih-sistem.html infonko.ru/osnovnie-problemi-delegirovaniya-i-puti-ih-resheniya.html